
United States
Department of
Agriculture

Introducing a New Integer
Calibration Procedure

National
Agricultural
Statistics
Service

Luca Sartore

Kelly Toppin

Clifford Spiegelman

Research and
Development Division
Washington DC 20250

RDD Research Report
Number RDD-16-STS

July 2016

This report was prepared for limited distribution to the research community outside the United
States Department of Agriculture. The views expressed herein are not necessarily those of the

National Agricultural Statistics Service or of the United States Department of Agriculture.

TABLE OF CONTENTS

1 INTRODUCTION 2

2 METHODS 3
2.1 Description of the problem . 3
2.2 Description of the algorithm . 4

2.2.1 Adjustments and an ad-hoc rounding method 4
2.2.2 An integer-swapping algorithm for calibration 5

2.3 An R package for integer calibration . 5
2.3.1 adjWeight() . 5
2.3.2 roundWeights() . 6
2.3.3 intcalibrate() . 6

3 RESULTS 6

4 CONCLUSIONS 7

5 REFERENCES 8

i

Introducing a New Integer Calibration Procedure

Luca Sartore∗, Kelly Toppin†and Clifford Spiegelman‡

Abstract

The USDA’s National Agricultural Statistics Service (NASS) conducts a census of agriculture every
5 years, in years ending in 2 and 7. The census describes the characteristics of U.S. farms and the
people who operate them. It is the only source of uniform, comprehensive data for every state and
county. To adjust for undercoverage, nonresponse and misclassification, NASS adjusts the weights
on the responding records using a capture-recapture methodology. However, the weights need to
be further refined through a calibration process so that the census estimates agree with known
population values. Some of the census estimates, such as demographic estimates, are included
among the targets so that these estimates are not distorted during calibration. Current NASS
calibration methodology is robust but often fails to match all target simultaneously. In this article,
we describe a new calibration procedure based on L1-norm relative error. We present the results
of a simulation study designed to investigate the consistency and efficiency of the estimators. The
calibration estimator can match more targets simultaneously thus providing a foundation for a
better methodology.

KEY WORDS: Calibration; Weights; Rounding; Integer optimization.

∗National Institute of Statistical Sciences.
†National Agricultural Statistics Service, United States Department of Agriculture.
‡Texas A&M University.

1

1 INTRODUCTION

The idea of calibration was first introduced by Lemel (1976). Lemel’s idea gained prominence in

the statistical world after Deville (1988) and Deville and Särndal (1992) generalized it. Calibration

ensures that the “sample” totals match some previously known totals of the population.

Consider a finite population U with N units numbered by index, i ∈ {1, . . . , N} and with p

number of variables. Let xji be a value of the variable of interest, xj , with j ∈ {1, . . . , p}, for the

i-th population member. Suppose we are interested in estimating the population total

tj =
∑
i∈U

xji,

given a sample S = {1, 2, . . . , n} ⊂ U with sampling design weights di. An estimate for tj is the

Horvitz-Thompson estimator

t̂HT
j =

∑
i∈S

dixji.

Now suppose we know the population total, tk for some variable k. Then ideally we want that

∑
i∈S

dixki = tk,

but this is often false. The calibration process is used to find weights wi for i ∈ S close to di, based

on a distance function, such that

∑
i∈S

wixki = tk.

After finding wi, the calibration estimator for tj is

t̂j =
∑
i∈S

wixji.

In section 2.1, we briefly describe the calibration problem; while in section 2.2, we explain the

algorithms developed; and in section 2.3, we present a package for calibrating integer weights with

2

R software (R Core Team, 2015).

2 METHODS

2.1 Description of the problem

Normally, one approaches the calibration problem by solving a system of linear equations. This

linear system is formulated as

y = Aw,

where y denotes the vector of point targets, A represents the matrix of collected data, and w is the

vector of weights to calibrate.

Usually, the number of equations is less the number of weights, and so there exists multiple

solutions. One solution is given by computing the product between the Moore-Penrose inverse of the

matrix A and the vector of point targets. However, this method can be computationally unfeasible

due to the large dimensions of the data matrix. Therefore, one usually reduces the problem to the

following optimization:

min
w∈W⊂Rn

L(y −Aw), (1)

by satisfying the following constraints:

Aw ≥ `y, and Aw ≤ uy,

where `y and uy are two vectors representing respectively the lower and the upper bounds around

the point targets, and W is the set of integer numbers which satisfy the following inequalities:

w ≥ `w, and w ≤ uw. (2)

The objective function L(·) is based on a generic loss function, which can be also used to improve

convergence and further simplify the problem.

3

2.2 Description of the algorithm

Traditionally, the problem in (1) can be attacked by performing the minimization with real numbers

(Kott, 2006), and then rounding to the best integer solution. Here, we propose a method to estimate

the calibration weights by dealing only with integer numbers. The original problem can be simplified

by considering the following formula:

min
w∈Zn

n∑
i=1

ρyi,`i,ui

(
a>i w

)
+ λP (w)

such that the constraints in (2) are satisfied, where ai is the i-th row of the matrix A, ρyi,`i,ui
(·)

is a generic loss function, and λ is a non-negative scalar, which balances the weight penalty P (·)

which can be defined as ‖w − d‖1, where d can be either the adjusted or unadjusted non-integer

initial choice of the design weights.

2.2.1 Adjustments and an ad-hoc rounding method

In order to produce a feasible initial point for the calibration algorithm, the non-integer initial

choice of weights must be processed. Initially, whenever the constraints in (2) are not satisfied,

the all unfeasible weights are truncated to their closest boundary. The gradient of the objective

function is then computed from the adjusted weights for assigning a higher priority to the weights

to be changed first. Hence, the gradient is calculated by

n∑
i=1

∇wρyi,`i,ui

(
a>i w

)
− λ sign(w − d), (3)

where ∇wρyi,`i,ui

(
a>i w

)
is the gradient of the chosen loss function, while the function sign(·) is

used to compute the sign of each component of the w − d vector. The priority is given from the

largest to the lowest absolute value of the gradient components. For each weight to be rounded,

either the closest lower or upper integer is selected such that the objective function is minimized.

Whenever the objective function is not sufficient to establish which integer number is better, the

regular rounding technique is applied. This technique is iterated by conditioning on the rounded

weights computed in the previous steps. At each step, the gradient is updated for computing the

new priorities. In so doing, the best rounded point is achieved to allow for the execution of the

4

calibration algorithm.

2.2.2 An integer-swapping algorithm for calibration

The integer programming technique, that we called the integer-swapping algorithm, addresses the

calibration by dealing with only integer numbers. It is designed to move a singular integer weight

by unit-shifts according to the constraints in (2) and the magnitude of the gradient in (3).

The algorithm starts by calculating both the gradient and the priority indexes, which will be

updated at each single step, in order to allow for multiple shifts. Successively, the weight with

a higher priority index is processed, and since the gradient gives the climbing direction of the

objective function, the unit-shifts are established by the opposite sign of the gradient. If the shift

decreases the objective function, then the vector of integer weights is updated, and the procedure

starts from the beginning; otherwise, the consecutive weight with lower priority is processed as

explained above. The algorithm stops when no unit-shift produces any improvement.

2.3 An R package for integer calibration

In this section we present inca (Sartore and Toppin, 2015) an R package for the calculation of integer

weight calibration. The main feature of this package is the fact that it produces integer weights

after calibration that are close to the design weights. There are three primary functions within

inca. These three primary functions are adjWeights(), roundWeights() and intcalibrate().

We describe each of these functions below.

2.3.1 adjWeight()

This function ensures that all weights are within the provided boundaries. If a weight is outside

the provided boundaries, adjWeight() will change this weight to the closest boundary integer. We

illustrate with an example. Let [0.1, 6.9] be provided boundaries. Then the boundary integers are

[1, 6]. Let 0.7 be a weight in the vector of weights we are calibrating. Then adjWeight() will

change 0.7 to 1, since 1 is the closest boundary integer. The output from this function is a vector

of weights that is within the user defined boundaries.

5

2.3.2 roundWeights()

This function acts like a modified floor() or ceiling() function. It rounds a weight to either its

floor() or ceiling() depending on which is better for the objective function. The output from

this function is a vector or integer weights which is not optimized. The optimization of the weights

is the job of the next primary function.

2.3.3 intcalibrate()

This function executes the integer-swapping programming algorithm. In inca, the user selects

from 10 different objective functions listed in Table 1. The intcalibrate() function calculates

the gradient of the selected objective function and uses this information to determine which weight

must be changed for minimizing the objective function. The output from this function is the final

vector of the calibrated integer weights.

Objectives Description

L1 Sum of absolute errors
aL1 Asymmetric sum of absolute errors
rL1 Sum of absolute relative errors
LB1 Sum of absolute errors of outside boundaries
rB1 Sum of absolute relative errors if outside the boundaries
L2 Sum of square error
aL2 Asymmetric sum of square errors
rL2 Sum of square relative errors
LB2 Sum of square errors if outside the boundaries
rB2 Sum of the square relative errors if outside the boundaries

Table 1: Table showing the different objective functions available in inca and their description.

3 RESULTS

A simple simulation is performed to demonstrate the use of the inca package. The dataset A, the

true weights tw, and the targets y are initially generated. Then 154 weights are simulated as an

initial guess from a uniform distribution with support in [0, 7.77]. If each weight is assumed to be

in the set {1, . . . , 6}, then the weights are rounded and calibrated through the following R code:

set.seed(0); tw <- rpois(154, 3) + 1

A <- matrix(rbinom(154000, 1, .3) * rpois(154000, 4), 1000, 154)

6

y <- A %*% tw; iw <- runif(154, 0, 7.77) # Initial guess

rw <- inca::roundWeights(iw, ~. + 0, y, l = 1, u = 6, sp = T, d = A)

cw <- inca::intcalibrate(rw, ~. + 0, y, l = 1, u = 6, sp = T, d = A)

In Figure 1 we see how the real design weights are transformed by calibration.

Calibration Results

Values of the weights

Ty
pe

 o
f t

he
 w

ei
gh

ts

0 1 2 3 4 5 6 7

ca
lib

ra
te

d
ro

un
de

d
in

iti
al

Figure 1: Parallel-coordinates plot showing the transition between the design, initial and calibrated weights.

4 CONCLUSIONS

This new integer calibration algorithm is a significant upgrade over existing methods that produce

integer weights. It eliminates the need for rounding after real number calibration. We developed an

R package, based on our method, to help other R users with integer calibration problems. The main

features of the R package inca have been explained and illustrated in the package. The current

version (0.0.1) of inca should be regarded as a package for the calculation of integer weights in

calibration. See inca package manual for a complete guide on how to use inca.

7

5 REFERENCES

Deville, J.C. 1988. “Estimation linéaire et redressement sur information auxiliaire d’enquêtes par

sondage.”

Deville, J.C., and C.E. Särndal. 1992. “Calibration Estimators in Survey Sampling.” Journal of the

American Statistical Association 87:376–382.

Kott, P. 2006. “Using calibration weights to Adjust for nonresponse and coverage errors.” Survey

Methodology 32:133–142.

Lemel, Y. 1976. “Une généralisation de la méthode du quotient pour le redressement des enquêtes

par sondage.” Annales de l’inséé :273–282.

R Core Team. 2015. R: A Language and Environment for Statistical Computing . Vienna, Austria:

R Foundation for Statistical Computing.

Sartore, L., and K. Toppin. 2015. inca: Integer Calibration. R package version 0.0.1.

8

	INTRODUCTION
	METHODS
	Description of the problem
	Description of the algorithm
	Adjustments and an ad-hoc rounding method
	An integer-swapping algorithm for calibration

	An R package for integer calibration
	adjWeight()
	roundWeights()
	intcalibrate()

	RESULTS
	CONCLUSIONS
	REFERENCES

